
Escape over a fluctuating barrier: Limits of small and large correlation times

Jan Iwaniszewski*
Institute of Physics, Nicholas Copernicus University, Grudzia¸dzka 5, 87-100 Torun´, Poland

~Received 12 February 1996!

We investigate the problem of diffusion across a randomly fluctuating barrier in the presence of thermal
noise. The barrier fluctuations are induced by an Ornstein-Uhlenbeck noise the strengthQ of which is assumed
to depend on the noise correlation timet. In the vicinity of the limits of zero and infinitet we calculate the
exact formulas for the first two terms of the expansion in powers oft of the mean first-passage time~MFPT!
over the top of the barrier. The results are strongly conditioned by the form of thet dependence ofQ. The
main conclusion is that the nonmonotonict dependence of the MFPT is generic, while the monotonicity of the
MFPT occurs only in some specific cases. Whent increases from zero, for a class of barrier noises withQ
increasing faster than linearly one should observe ‘‘resonant activation,’’ i.e., a minimum of the MFPT as a
function oft. The appearance of a maximum, called ‘‘inhibition of activation,’’ is also possible provided that
the noise varianceD increases faster than linearly as a function of 1/t in the vicinity of the limit 1/t→0. Both
kinds of extrema may also appear simultaneously. These effects depend neither on the shape of the barrier nor
on its disturbance. IfQ(t) @or D(1/t)# varies linearly or slower ast (1/t) increases from zero, then the
peculiarities of the perturbed barrier become essential and any type oft dependence of the MFPT, also a
monotonic one, is possible. The specific analogy between the properties of the MFPT fort→0 and for
t→` is stressed.@S1063-651X~96!02909-1#

PACS number~s!: 05.40.1j, 02.50.2r, 82.20.2w

I. INTRODUCTION

In recent years the stochastic dynamics community has
become increasingly interested in noise-induced resonance-
like effects in nonlinear systems. The best known and the
most intensively studied phenomenon of this kind isstochas-
tic resonance@1#, a cooperative effect of nonlinearity, peri-
odicity, and stochasticity, resulting in an enhancement of
small coherent signals by noise. The conventional model of
stochastic resonance@2# concerns diffusion over a barrier
inside a symmetric double-well potential driven by a small
asymmetric periodic signal which changes alternately the
depths of the wells. Quite recently Doering and Gadoua@3#
have discovered another resonancelike behavior for diffusion
over a potential barrier with a randomly fluctuating height.
The mean escape timeT over the barrier has exhibited a
minimum as a function of the correlation timet of the bar-
rier fluctuations. The minimal value ofT has been of the
order oft which has suggested a resonancelike character of
the phenomenon, hence the effect has been calledresonant
activation ~RA!.

Both phenomena are in fact some variants of one of the
most fundamental problems in noisy dynamics, namely, the
diffusive escape over a potential barrier. The foundations of
its theory were laid by Kramers@4# half a century ago and
since that time many modifications and generalizations of the
problem have been formulated~see, e.g.,@5#! leading to
some interesting new phenomena such as the resonancelike
behavior mentioned above. The ubiquity of noise-assisted
barrier crossing in physics, chemistry, biology, and other
branches of science or technology is such that one may ex-
pect many applications of any new effect associated with it.

The classical Kramers theory@4–6# deals with a diffusion
induced by an idealized uncorrelated noise. As the main re-
sult one obtains the Arrhenius-like formulaT;exp(DU/q)
for the dependence of the escape timeT on the barrier height
DU and the noise strengthq. A more realistic treatment of
diffusion due to an exponentially correlated noise had not
been investigated prior to the eighties. The general conclu-
sion of any of the numerous theories@7,8# states that the
noise memory slows the escape process down. In the case of
a complex system whose dynamics is governed by a wide
variety of time scales, it may happen that one or more of
those time scales are comparable with the duration of the
diffusion over the barrier. It is therefore reasonable to expect
that during the barrier crossing event the barrier itself does
not remain static — it will vary, being modulated by some
relevant degree of freedom, often in a stochastic fashion.
This may happen for some processes in complex systems
like chemical reactions between large molecules@9# or for
parametrically driven systems like dye lasers@7#. Some prob-
lems of the escape process in the presence of two noise
sources~additive and multiplicative! have been considered in
@10,11#. It seems that a systematic research of diffusion over
a fluctuating potential barrier was initialized by Stein, Doer-
ing et al. @12,13# leading to the discovery of RA@3#.

The toy model studied in@3# consists of a piecewise linear
barrier the slope of which is randomly switching between
two possible values. A simplified version of the problem has
also been considered within the rate equation framework
@14–18#. A more physical case deals with diffusion over a
smooth potential barrier the shape of which varies randomly
due to the fluctuations of a continuous parameter. Such a
general model has been mentioned by Reimann@19# and
discussed more carefully by Ha¨nggi et al. @20–23# and Re-
imann @24,25#. Quite recently the first experimental results
on an electronic analogue circuit have been announced by*Electronic address: jiwanisz@phys.uni.torun.pl
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Marchesoniet al. @26#. All those papers demonstrate the
great complexity of the problem and formulate many open
questions. It is the aim of this article to discuss some of
them.

In the papers cited above the barrier fluctuations are sup-
posed to be exponentially correlated. In calculations they are
represented by two widely used kinds of noise, namely, a
dichotomous noise~DN! or an Ornstein-Uhlenbeck noise
~OUN!. Both of them are parametrized by two quantities,@8#
one of which is the correlation timet, the control parameter
of the problem. RA can appear in the presence of any of
those noises, however, it strongly depends on the choice of
the second,t-independent parameter. E.g., if this parameter
is chosen to be the noise variance then RA occurs; if it is the
noise strength, RA is absent@19,26#. Moreover, Reimann
@19# has shown that it is possible to obtain also the opposite
effect, namely, a maximum ofT(t) for a finitet. The analy-
sis of Hänggi @20# proves, that RA can occur generically
whenever the colored noise intensity increases sufficiently
fast with increasingt, e.g., for a linear increase in the case
when the noise variance is constant@see Eq.~2.3! below#.

The discovery of RA caused some astonishment@27#
since there existed a conviction about a monotonict depen-
dence of the escape time, which had arisen after the investi-
gation of diffusion in the presence of OUN@7,8#. We show,
that the reason for this confusion is some arbitrariness in
defining the OUN, namely, in the choice of the second rel-
evant parameter of this noise.

Because of its non-Markovian character, the problem may
be treated exactly only in some special cases, e.g., for a
piecewise linear barrier disturbed by DN@3,14#. In general
one needs some approximation@11,20,22,25#. However, it is
not necessary to investigate the whole range oft to antici-
pate the appearance of RA. It suffices to check the depen-
dence of the escape timeT on the correlation time for
t→0. As follows from the study of the escape process in-
duced by OUN, an increase inT with increasingt seems to
be a natural tendency. Hence the negative value of the first-
order correction ofT for infinitesimally smallt suggests the
occurrence of RA@18,19,24,25#. Such an approach is applied
in this paper.

We study the escape process calculating the mean first-
passage time~MFPT! over the top of the barrier for a particle
initially prepared in the bottom of the potential well. The
non-Markovian character of the one-dimensional problem is
avoided by embedding it in a two-dimensional Markovian
process. In general, such a multidimensional problem is un-
solvable analytically. However, since we are interested in the
form of T(t) in the very vicinity of the white noise limit, the
appropriate expansion results in some simple differential
equations which yield the exact formulas by means of
quadratures. Besides the white noise limit we study, also, in
the same way the other limitt→`, so we are able to predict
any nonmonotonic behavior of MFPT associated either with
a minimum~RA! or a maximum@we call this effectinhibi-
tion of activation~IA !# of the escape timeT(t).

The outline of the paper is as follows. In Sec. II we ana-
lyze the relations between different quantities which charac-
terize any OUN and we specify a class of noises which we
use to disturb the barrier. Next~Sec. III! the dynamics of the
problem is formulated and the general equations for the

MFPT are given. In the two subsections we calculate the
exact formulas for the MFPT, and its first-order correction,
for both limits of the correlation time. A simplified version
of those results is given in Sec. IV within the weak noise
approximation, which allows one to analyze the effect of the
shape of the barrier and of its perturbation on the escape
process. A discussion of thet dependence of the MFPT is
presented in Sec. V. We find a relation between the proper-
ties of exponentially correlated fluctuations of the barrier and
the possibility of the appearance of extrema ofT(t). The
main conclusion is that for almost any kind of exponentially
correlated Gaussian noise one observes a generic nonmono-
tonicity of T, either with a minimum, or with a maximum, or
even with both extrema simultaneously. Some simple ex-
amples are given in Sec. VI while in Sec. VII we discuss the
results and draw some conclusions.

II. EXPONENTIALLY CORRELATED NOISE

Let us consider a stationary Markovian Gaussian process
z(t) of vanishing mean and varianceD. According to the
Doob’s theorem@28# this is necessarily an OUN which pos-
sesses an exponentially decreasing correlation function

C~ t !:5^z~ t8!z~ t81t !&5D expS 2
utu
t D , ~2.1!

with the correlation timet. This process is governed by the
following linear stochastic differential equation:

dz

dt
52

1

t
z1

A2Q
t

h~ t !, ~2.2!

with h(t) being a Gaussian white noise of zero mean and the
correlation function ^h(t)h(t8)&5d(t2t8). The noise
strengthQ is related to the varianceD through the formula

D5Q/t. ~2.3!

The processz(t) may also be treated as a superposition of
harmonic oscillations with random amplitude and phase@28#.
Its power spectrum

S~v!:5
1

2pE2`

`

dtC~ t !exp~2 ivt !5
Q

p

1

11t2v2 ~2.4!

is then the measure of the contribution of the oscillation of
frequencyv to the total noisez(t), while the inverse of the
correlation time~the width of the spectrum! gives the range
of the most essential oscillations.

The processz(t) is completely characterized by two pa-
rameters. One of them is the correlation timet, which is the
crucial parameter in our considerations. The choice of the
second parameter is somewhat arbitrary and depends on the
details of the problem. Describing the properties of OUN we
have used either the noise strengthQ @~2.2! and~2.4!# or the
noise varianceD ~2.1!. Those two parameters seem to be the
simplest, natural quantities which determine, together with
t, all the properties ofz(t).

Let us take a closer look at the behavior of the functions
C(t) andS(v) when t reaches its limiting values 0 or̀ .
Keeping eitherQ or D constant one gets
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Q5const D5const

t→0 C~ t !→Qd~ t ! C~ t !→HD for t50

0 for tÞ0

S~v!→Q/p S~v!→0

t→` C~ t !→0 C~ t !→D

S~v!→HQ/p for v50

0 for vÞ0
S~v!→Dd~v!.

~2.5!

In the limit t→0, if Q is kept constantz(t) becomesd
correlated and its varianceD is infinite — z(t) takes all
values between minus and plus infinity with equal probabil-
ity. Further, all the frequencies contribute with the same fi-
nite intensityQ/p, so the total power is infinite. These un-
physical features reflect the extreme irregularity~e.g.,
nondifferentiability! of the Gaussian white noise@28#. If
D5const the properties ofz(t) are quite different. The pos-
sible values ofz(t) lie in a finite interval. Although the pro-
cess is also memoryless and thus its spectrum is flat, the total
power is finite, i.e., the intensity of any individual frequency
vanishes. Consequently, the limitt→0 is in fact a noiseless
one @28#.

In the limit t→` the power spectrum consists of a single
S(v) component. For constantD the intensity of this com-
ponent is infinitely large, but the total power is finite, soz is
a time-independent number randomly distributed within a
finite interval. If Q is constant then the amplitudeS(0) is
finite and the total power vanishes. ConsequentlyD50 and
this is a noiseless case too@19# ~freezing out of colored noise
@23#!.

The above analysis shows some analogy between the
properties ofz(t) in both limits of t. The correlation func-
tion C(t) for t→0 (`) behaves like the noise spectrum
S(v) for t→` (0). Thesame concerns the role ofQ and
D. Let us also notice, that depending on the choice of the
constant parameterQ or D, in any limit one obtains either a
singular noise with some nonphysical properties~infinite to-
tal power or infinite intensity of one spectral component! or
a completely noiseless case.

In some large systems, when one represents the influence
of the irrelevant degrees of freedom on the relevant part of
the system by an OUN, the relation between the parameters
of this noise may be much more complex, with neitherQ nor
D being independent oft. In this paper we consider a gen-
eral case of such a relation. Because we study the activation
process in the presence of extremely fast or extremely slow
barrier fluctuations, it suffices to specify thet dependence of
the second noise parameter in the limits of small and large
t only. In the following it is assumed that ast→0 or
t→`, the noise strength takes the form

Q~t!5ta~Q01tbQ11••• !, 0,Q0,` ~2.6!

where the parametersQi and the exponentsa, b are gener-
ally different in both limits oft. If only Q0 is different from
zero one recognizes the above mentioned constant-strength
noise ~CSN! and constant-variance noise~CVN! for a50
anda51, respectively. The form of expansion~2.6! yields
b>0 for t→0 or b<0 for t→`, while it follows from the

analysis in Sec. III thata>0 or a<1, respectively. The
latter inequalities have a simple explanation according to the
discussion which follows Eq.~2.5!. In the limit t→0, a
negative value ofa would mean that the varianceD is infi-
nitely large not only because the noise isd correlated, but
also due to the infinite value of its strengthQ. This would
imply that the intensity of any spectral component is infinite,
hence, the total power would be ‘‘doubly’’ infinite. An
analogous behavior whent→` is observed in the case
a.1.

An analysis of the properties ofz(t) with Q(t) given by
~2.6! shows thatz(t) disappears unlessa50 or a51 for
t→0 or t→`, respectively. Thus in both limits oft the
only nonvanishing members of the class of Gaussian station-
ary noises~2.2! are those which converge to CSN or CVN,
respectively. Further, for a noise withaÞ0 (aÞ1) any
slight increase oft (1/t) from 0 means that the noise starts
to have an effect on the system with which it is coupled.
Because any characteristic time constant of the system is
finite, in the neighborhood oft50 an increase oft induces
the same effect as an increase in the strength of the white
noise. Similarly, for sufficiently larget a decrease oft im-
plies the same changes as an increase of the variance of an
infinitely long-correlated noise. Thus for the noises with
a.0 (t→0) or a,1 (t→`) it is enough to know the
influence of zero- or infinitely long-correlated noises on the
system to predict the role of the finite memory ofz(t).

In order to make Eq.~2.2!, which describes the dynamics
of barrier fluctuations, independent of the specific form of
Q, we use the scaling

z~ t !5A2Q/ty~ t !, ~2.7!

and consider in the following a Gaussian stationary noise
y(t) of zero mean and variance equal to 1/2, which is gov-
erned by the equation

dy

dt
52

1

t
y1

1

At
h~ t !. ~2.8!

The noise strengthQ appears explicitly in the fluctuating part
of the potential in Eq.~3.1! which describes the escape pro-
cess.

III. MEAN FIRST-PASSAGE TIME

Let us consider an overdamped motion of a particle in a
potential which consists of two parts: a static oneU(x) and a
time-dependent disturbancez(t)V(x). The potentialU(x)
has a local minimum atxa and a local maximum at
xb.xa , and for the sake of convenience there are no other
extrema forx,xb . Consequently there is a potential barrier
of heightDU:5U(xb)2U(xa) with one metastable well on
its left-hand side ~lhs!. Similarly we denote
DV:5V(xb)2V(xa) and we restrict ourselves to the case
DV>0 @the negative sign could be absorbed intoz(t)#. Fur-
ther, it is assumed that the perturbation does not change the
positions of the extrema of the total potential, so
V8(xa)5V8(xb)50. To ensure the physical sense of the
problem we also suppose that the disturbance is not very
large so that the barrier is always present and the character of
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the extrema is preserved. The time-dependent factorz(t) of
the disturbance describes random fluctuations of the barrier
and is realized by the OUN~2.2!. The particle undergoes also
thermal fluctuations characterized by a Gaussian white noise
A2qj(t) of vanishing mean, strengthq, and correlation
^j(t)j(t8)&5d(t2t8). Finally, we assume thatj(t) and
h(t) in ~2.2! are uncorrelated. The dynamics of the particle
is thus governed by the following Langevin equation:

dx

dt
52U8~x!2A2t21Q~t!V8~x!y~ t !1A2qj~ t !,

~3.1!

where the scaled noisey(t) ~2.7! is used instead ofz(t).
The particle is initially located at the minimumxa and the

quantity of interest is its mean escape timeT over the poten-
tial barrier. Among the standard approaches@5# to such a
problem we choose the first-passage time~FPT! technique
with T being the MFPT over the barrier top atxb . For ex-
tremely short and for extremely long correlations of barrier
fluctuations this approach results in some exact equations
which are solvable by means of quadratures.

If the disturbance is absent, the MFPT for a static barrier
reads@6#

Ts~xa!5
1

qExa
xb
du

1

Cs~u!
E

2`

u

dvCs~v !, ~3.2!

where

Cs~x!5expS 2
U~x!

q D . ~3.3!

The presence of correlated fluctuations of the barrier im-
plies the main complication of the problem, namely, its being
non-Markovian. We omit this difficulty by considering an
equivalent two-dimensional Markovian process@x(t),y(t)#
governed by~3.1! and ~2.8! for which the formalism of the
Fokker-Planck equation is applicable. The Fokker-Planck
operator associated with~3.1! and ~2.8! reads

L~x,y!5t21L0~y!1A2t21Q~t!yL1~x!1L2~x!, ~3.4!

where

L0~y!5
]

]y
y1

1

2

]2

]y2
, ~3.5a!

L1~x!5
]

]x
V8~x!, ~3.5b!

L2~x!5
]

]x
U8~x!1q

]2

]x2
. ~3.5c!

In the two-dimensional space the escape takes place when
the particle crosses the separatrix which bounds the region of
attraction of the potential minimum. SinceV8(xb)50 the
separatrix is simply a straight linex5xb . Hence we are sure
that there is no ambiguity@29# in the definition of the escape
moment — any event of passing the positionxb in the one-
dimensional non-Markovian formulation is equivalent to
crossing the separatrixx5xb in the two-dimensional Mar-

kovian one. The standard technique@6# yields an equation
for the MFPTT(x,y) over this separatrix

215L1~x,y!T~x,y!, ~3.6!

with the absorbing barrier atx5xb imposing the condition

T~xb ,y!50. ~3.7!

The form of the operatorL0 suggests an expansion of
T(x,y) into a series of the Hermite polynomialsHn(y) @30#

T~x,y!5 (
n50

`

tpnTn~x;t!Hn~y!, ~3.8!

with the boundary conditions

Tn~xb ;t!50. ~3.9!

The exponentspn , different in both limits oft, give the
leading dependence on the correlation time of the expansion
coefficients in~3.8!. After averaging~3.8! over the Gaussian
distribution of y one obtainsT5tp0T0(x;t). Since the es-
cape time should be well defined when the barrier fluctua-
tions disappear~sayQ050), so p050 for both t→0 and
t→`.

A. Small t limit

Inserting ~3.8! into ~3.6! and using the properties of the
Hermite polynomials one obtains an infinite set of equations
for Tn(x;t). The analysis of the dominant terms for small
t gives a>0 andpn5n(a11)/2. Thus we get the set of
equations~the dots stands for the higher-order terms int)

215L2
1T01taA2Q0L1

1T11ta1b
Q1

A2Q0

L1
1T11•••,

~3.10a!

052nTn1
1

2
A2Q0L1

1Tn211tL2
1Tn1ta11~n11!

3A2Q0L1
1Tn111tb

1

2

Q1

A2Q0

L1
1Tn211•••,

for n51,2, . . . , ~3.10b!

which may be solved perturbatively

Tn~x;t!5Tn,0~x!1«Tn,1~x!1•••, ~3.11!

with the perturbation parameter« being dependent on the
values ofa andb. A simple manipulation leads to the fol-
lowing equations for zeroth- and first-order terms ofT0:

for a50:

L01T0,0521, ~3.12a!

L01T0,152Q1L1
12T0,0, «5tb, for 0,b,1 andQ1Þ0,

~3.12b!
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L01T0,152Q0L1
1L01L11T0,02Q1L1

12T0,0, «5t,

for b51 and Q1Þ0, ~3.12c!

L01T0,152Q0L1
1L01L11T0,0, «5t, for b.1 or Q1

50; ~3.12d!

for a.0:

L2
1T0,0521, ~3.12e!

L2
1T0,152Q0L1

12T0,0, «5ta. ~3.12f!

L0 is the Fokker-Planck operator of the total problem in the
white noise limitt→0 ~e.g.,@7#!

L0~x!5
]

]x SU8~x!2
1

2
G8~x! D1

]2

]x2
G~x!, ~3.13!

with the diffusion function

G~x!5q1Q~t50!V82~x!. ~3.14!

G(x) depends ona through the noise strengthQ, namely,
Q(0)5Q0 for a50, while Q(0) vanishes fora.0. Thus
the barrier fluctuations modify the diffusion function only for
a50 and this manifests itself in an increase ofG(x). If
a.0 due to the disappearance ofz(t) ~Sec. II! there is no
effect ofV(x) on the escape event.

Equations~3.12! are solvable by means of quadratures
with the boundary conditions similar to~3.9!. The zeroth-
order term, i.e., the exact result in the white noise limit, reads

T0,05E
xa

xb
du

1

AG~u!

1

C~u!
E

2`

u

dv
1

AG~v !
C~v !,

~3.15!

where

C~x!5expS 2Ex

dx8
U8~x8!

G~x8! D . ~3.16!

It follows from these formulas that the MFPT decreases
when it is affected by barrier fluctuations (a50). The first-
order term reads

T0,15m~a,b!A01n~a,b!B0, ~3.17a!

where

A05E
xa

xb
duU8

V82

G

12E
xa

xb
du

1

AG
1

CE
2`

u

dv
1

AG
CE

v

u

dwSU8V8

G D 8 qV9

G

1E
xa

xb
du

1

AG
1

CE
2`

u

dv
1

AG
CF12 SU8V81qV9

G D 2Uu
1
1

2 SU8V82qV9

G D 2Uv1S qV9

G D 2Uu1S qV9

G D 2UvG ,
~3.17b!

B052E
xa

xb
du

1

AG
1

CE
2`

u

dv
1

AG
C~v !F12 V82

G Uu
1
1

2

V82

G Uv1E
v

u

dw
U8V82

G2 G , ~3.17c!

and

m~a,b!5H Q0 for a50 and ~b>1 or Q150!,

0 otherwise,

n~a,b!5H Q1 for a50 and 0,b<1 and Q1Þ0,

Q0 for a.0,

0 otherwise.
~3.17d!

The index‘‘0’’ of A0 andB0 indicates the zero-t limit.
In B0 one easily recognizes the first-order derivative of

T0,0 ~3.15! with respect to the colored noise parameterQ0.
SinceU8(x)>0 for xa<x<xb all the terms in the square
brackets in~3.17c! are positive andB0 is negative. As for
A0, the first and the third terms are positive, nevertheless the
sign of the second one is not clear. Only the second term
survives in the small noise limit~see Sec. IV!, so a careful
analysis of its sign is required. We return to this point further
in Sec. IV.

B. Large t limit

The caset→` may be treated in a similar way. The
analysis of the dominant terms for larget implies, that now
a<1 andpn5n(a21)/2. Consequently one obtains

215L2
1T01ta21A2Q0L1

1T11ta1b21
Q1

A2Q0

L1
1T11•••,

~3.18a!

05L2
1Tn1

1

2
A2Q0L1

1Tn212t21nTn1ta21

3~n11!A2Q0L1
1Tn111tb

1

2

Q1

A2Q0

L1
1Tn211•••,

for n51,2, . . . . ~3.18b!
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It may be shown, however, that fora51 in order to calcu-
late the zeroth-order termT0,0 of the MFPT one needs to
solve an infinite set of coupled equations for the zeroth-order
terms of all the expansion coefficientsTn(x;t) (pn50 for
any n). This follows from the fact, that for very long-
correlation times the noise variabley(t) fluctuates adiabati-
cally slowly in comparison to any other time scales of the
problem. The influence ofy on the dynamics of the system
should be treated parametrically rather than perturbatively.
Consequently one gets the zeroth-order approximation of the
MFPT by averaging over the MFPT’s calculated from~3.1!
for fixed y. In the remaining casea,1 the noisey enters the
higher-order corrections only, so one may apply the expan-
sion ~3.8!.

We begin witha51. The aim is to find the first two terms
of the expansion

T~x,y!5T0~x,y!1«T1~x,y!1••• ~3.19!

@compare~3.11!#. A simple calculation results in the follow-
ing equations:

L`
1T0521, ~3.20a!

L`
1T152

Q1

A2Q0

L1
1yT0 , «5tb,

for 21,b,0 and Q1Þ0, ~3.20b!

L`
1T152L0

1T02
Q1

A2Q0

L1
1yT0 , «5t21,

for b521 and Q1Þ0, ~3.20c!

L`
1T152L0

1T0 , «5t21, for b,21 or Q150,
~3.20d!

with the zeroth-order~for the infinite correlation time!
Fokker-Planck operator

L`5L21A2Q0L1y. ~3.21!

The solution of~3.20a! reads

T0~xa ,y!5
1

qExa
xb
du

1

Cs~u!
E

2`

u

dvCs~v !

3expSA2Q0

q
@V~u!2V~v !#yD . ~3.22!

The parametrically treated noisey appears in an exponential
form, so the averaging procedure over a Gaussian distribu-
tion is straightforward. One finds

T05
1

qExa
xb
du

1

Cs~u!
E

2`

u

dvCs~v !

3expS Q0

2q2
@V~u!2V~v !#2D . ~3.23!

Similarly one calculates the averaged first-order termT1:

T15m~b!A`1n~b!B`, ~3.24a!

where

A`52
1

q4Exa
xb
du

1

Cs~u!
E

2`

u

dvCs~v !E
v

xb
du8

1

Cs~u8!

3E
2`

u8
dv8Cs~v8!@V~u!2V~v !#@V~u8!2V~v8!#

3expS Q0

2q2
@V~u!2V~v !1V~u8!2V~v8!#2D ,

~3.24b!

B`~a51!5
1

2q3Exa
xb
du

1

Cs~u!
E

2`

u

dvCs~v !

3@V~u!2V~v !#2expS Q0

2q2
@V~u!2V~v !#2D ,

~3.24c!

and

m~b!5HQ0 for b <21 or Q150,

0 otherwise

n~b!5HQ1 for 21<b,0 and Q1Þ0,

0 otherwise.
~3.24d!

The index ‘ ‘̀ ’ ’ of A` andB` indicates the infinite-t limit.
As before,B` is the first-order derivative ofT0 with respect
to Q0 and it is always positive. The sign ofA` is not clear
and may depend on the shape ofV(x) ~see Sec. IV!.

If a,1 the expansion into the Hermite polynomials~3.8!
gives the following set of equations for the perturbative so-
lution ~3.11!:

L2
1T0,0521, ~3.25a!

L2
1T0,152A2Q0L1

1T1,0, ~3.25b!

L2
1T1,052

1

2
A2Q0L1

1T0,0, «5ta21. ~3.25c!

In the limit t→` the escape timeT0,0 is not affected by the
barrier fluctuations~see Sec. II! and it is given by~3.2!,
while its first-order correctionT0,1 for finite t reads

T0,1~xa!5Q0B
`~a,1!

5
Q0

2q3Exa
xb
du

1

Cs~u!
E

2`

u

dvCs~v !@V~u!2V~v !#2.

~3.26!

This expression is evidently positive.

IV. WEAK NOISE APPROXIMATION

In this section we approximate the general formulas de-
rived in Sec. III by means of the saddle point method, valid
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for the weak noise limit whenq andQ0 are much smaller
than the height of the potential barrierDU. This is a typical
approximation exploited while investigating diffusion over a
potential barrier. Nevertheless, we must stress that here the
small noise limit is taken as the succeeding approximation.
The preceding one is of course the limitt→0 or t→`. The
formulas for the MFPT and for its correction obtained in Sec.
III are exact just for those limiting values of correlation time,
while the approximation below is made for very small but
finite q andQ0. In this connection we consider the limits
t/q→0 and t/Q0→0 for t→0, or q/t→0 andQ0 /t→0
for t→`. We do not investigate the other limits, like
q/t→0 for t→0 ~see, e.g.,@31,7,8#!, which possibly gives a
different t dependence ofT @32#.

For the white noise limit the saddle point method approxi-
mates the formulas~3.2!, ~3.15!, ~3.17b!, ~3.17c!, respec-
tively

Ts'
p

AuU9~xa!U9~xb!u
expS 1

DU

q D , ~4.1!

T0,0'
p

AuU9~xa!U9~xb!u
expS 1E

xa

xb
dx

U8~x!

G~x! D ,
~4.2!

A0'2F E
xa

xb
duSU8V8

G D 8 qV9

G GT0,0, ~4.3a!

B0'2F E
xa

xb
du

U8V82

G2 GT0,0. ~4.3b!

Let us notice a great simplification of the expression for
A0, although its sign is still unknown — it depends on the
form of U(x) andV(x).

To discuss this problem let us integrate by parts the right-
hand side of~4.3a!. This yields

A0'2q~ I 12I 2!T0,0, ~4.4a!

where

I 152Q0E
xa

xb
dw

U8V82V92

G3 , ~4.4b!

and

I 25E
xa

xb
dw

U8V8V-
G2 . ~4.4c!

Although the integralI 1 is always positive, nevertheless, it
may be neglected as compared toI 2 when the strength of the
correlated noisez(t) is much smaller then the strength of
j(t), i.e., forR:5Q0 /q!1.

The sign of the second integralI 2 depends on the forms of
the potentialU(x) and its disturbanceV(x). In the whole
interval of integrationU8(x)>0. In the vicinity of the points
whereV8(x) reaches its extrema, the sign ofV98(x) is op-
posite to the sign ofV8(x) and the integral~4.4c! over those
regions ~of type I! is negative. Between the extrema of
V8(x) there possibly exist some regions~of type II! where

the signs ofV8(x) andV98(x) are the same and the integral
~4.4c! is positive. The sign ofI 2 depends on the relation
between the contributions of those two regions. It seems that
typically region I dominates since the absolute values of
V8(x) andV98(x) are greater in I than in II, and also since
the region I always exists while the region II may be very
small or may even be absent@e.g., for a cosinelike distur-
banceV(x);cos(x) one obtainsV8(x)V98(x);2sin2(x)#.
ConsequentlyI 2,0, soA0.0.

There are two ways to increase the contribution of region
II. The first one is to enlarge this region by an appropriate
choice ofV(x). The second possibility is to choose the po-
tential U(x) in such a way, that it increases mainly within
region II andU8(x) reaches there its comparatively sharp
maximum. The barrier in the potential of this kind is rather a
steep one with a flat bottom or a flat top. On the other hand,
the disturbance reaches its maximal value in region I, so it
acts mainly on the flat parts ofU(x).

As an example let us consider a sixth-order-polynomial
symmetric potential U(x)5w@1/6x611/4(p21)x4

21/2px2#. For 0<p<` and w512/(113p) it possesses
two wells with the minima atx561 and the height of the
barrierDU51. This potential is much flatter than the mostly
considered bistable quartic one@33#. The disturbance is
given by a Lorentz-like functionV(x)5g/(g1x2) which for
smallg is concentrated on the flat top of the barrier@34#. The
long wings of this function guarantee the last required prop-
erty, namely, the positiveness of the productV8(x)V-(x).
For p50.02 andg50.1 one getsI 2'10.56, and so it is
possible to obtain a negative value ofA0, too.

One must notice, however, that the potential perturbation
for the discussed case must be rather small because:~i! if
R increases thenI 1 becomes more important,~ii ! the fluctua-
tions of the potential cannot suppress the barrier between
xa and xb . In our example we found thatuz(t)u should be
less than 0.0113~this is understood as the limitation for the
central part of the Gaussian distribution, say a condition for
its variance!.

The weak noise approximation for an infinitely long cor-
relation time gives fora,1 the expression~4.1! for the
zeroth-order term and

T0,15Q0B
`~a,1!'

Q0

2q2
~DV!2Ts ~4.5!

for its first-order correction~3.26! @35#. The casea51 re-
quires a much more sophisticated analysis due to the appear-
ance of the terms withV(x) in the exponents of the exact
formulas. In order to exploit the saddle point method in
~3.23! and ~3.24c! one has to find a maximum of the two-
variable function

F2~u,v !5U~u!2U~v !1 1
2R@V~u!2V~v !#2. ~4.6!

It is located at the point (u,v)5(xb ,xa), as one expects,
only if the matrix of second derivatives of the function
F2(u,v) is non-negatively defined at this point, i.e., if

U9~xb!1R@V~xb!2V~xa!#V9~xb!,0. ~4.7!

In this case one gets the formulas@35#
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T0'S U11RDV
V9~xb!

U9~xb!
UU11RDV

V9~xa!

U9~xa!
U D 21/2

3expS Q0

2q2
~DV!2DTs , ~4.8!

B`~a51!'
1

2q2
~DV!2T0 . ~4.9!

In @24,25# Reimann has specified three types of distur-
bancesV(x). Type I is a monotonic function with a maxi-
mum atx5xb , so it heightens or lowers the barrier. Type II
is defined by the equalityDV50 and it possesses a maxi-
mum inside the interval (xa ,xb); this results in broadening or
narrowing the barrier. The third mixed type ofV(x) pos-
sesses at least one extremum in (xa ,xb) and different values
at xa andxb , soDVÞ0. Such a disturbance changes simul-
taneously the height and the width of the barrier. The condi-
tion ~4.7! is always fulfilled for the disturbance of type I or
II, but it may be violated for the mixed III type. Namely,
sinceV8(xb)50 there is a minimum ofV(x) at x5xb and
V9(xb).0. If V(xb) is sufficiently large, the lhs of~4.7! may
become positive. Consequently the maximum ofF(u,v) is
moved away from the point (xb ,xa) to a new position at the
point (u,v)5(umax,vmax), wherexa<vmax<umax<xb .

If the position of the maximum ofF2(u,v) is known the
approximation of the formulas~3.23! and~3.24c! is straight-
forward. We do not write here the corresponding expressions
~compare@25#!, but make only a remark. In the small noise
limit the exponential term in~4.8! decides on the MFPT
duration. Because the maximum ofF2 is moved away from
the point (xb ,xa), it follows that F2(umax,vmax)
>F2(xb ,xa)>DU. Consequently, the MFPT for type II po-
tential is of the order ofTs , the MFPT for type I is greater
and that for type III is greatest~assuming thatDV is the same
as for type I!. This means that very long-correlated barrier
fluctuations slow down the escape process if they disturb the
height of the barrier. On the other hand they do not modify
the escape time~in the zeroth-order term! if they alter the
barrier width only. However, if the height and the width are
disturbed simultaneously the escape time reaches its greatest
value.

The application of the saddle point method to the formula
~3.24b! is much more complicated. Because of the quadruple
integral a maximum of the four variable function

F4~u,v !5U~u!2U~v !1U~u8!2U~v8!

1 1
2R@V~u!2V~v !1V~u8!2V~v8!#2

~4.10!

must be found. Similarly as before the expected position of
the maximum is (u,v,u8,v8)5(xb ,xa ,xb ,xa), which results
in

A`'2
1

q2
~DV!2expF2Q0

q2
~DV!2GT02 , ~4.11!

soA` is negative@36#.
In some cases the maximum may be moved from this

point. A general analysis of such a possibility is very diffi-
cult, so we shall only discuss this topic qualitatively. The

functionF4 is symmetric with respect to the replacement of
the variablesu andu8. This implies, that the maximum lies
either at the point withu5umax5u85umax8 or at the point
u5umaxÞu85umax8 as well as at the pointu5umax8
Þu85umax. The same property concerns the variablesv
and v8. Hence, there is either one maximum at the point
(umax,vmax,umax,vmax), or a couple or even two couples of
maxima placed symmetrically with respect to the line
u5u8 or/andv5v8. In the case of a single maximum the
saddle point method results in a negativeA`, because the
term @V(u)2V(v)#@V(u8)2V(v8)# in ~3.24b! is positive.
If there are two maxima atumaxÞumax8 and vmax5vmax8
~for simplicity we suppose that the maxima are far enough
from each other! the approximation yields a sum of two
identical terms which include products of the type
@V(umax)2V(vmax)#@V(umax8 )2V(vmax)#. If, e.g.,V(umax)
,V(vmax),V(umax8 ), such a product is negative and
A`.0. Unfortunately we did not succeed in finding any ex-
ample illustrating such a case. It seems, however, that this
would take place only for very ‘‘exotic’’U(x) and V(x),
while for the ‘‘ordinary’’ potentialsA` should be negative.

V. MFPT AS A FUNCTION
OF THE CORRELATION TIME

In the previous sections we have derived the expressions
for the MFPT and for its first-order correction in both limits
of zero and infinite correlation time. Now, as mentioned in
the Introduction, we are in a position to analyze thet depen-
dence ofT and to discuss the effect of barrier fluctuations on
the escape process, i.e., to find whetherT(t) is monotonic or
not. We must stress, however, that the form ofT(t) may be
very complicated, even with several extrema. This cannot be
deduced only from the behavior ofT(t) in the vicinity of the
limiting values oft, particularly because we do not specify
the form ofQ(t) for all t.

In order to simplify the notation of Sec. III, below we use
T 0i andT 1i to denote the MFPT and its first-order correction,
respectively. The indexi50,̀ designates one of the limits
of t.

A. Comparison of the MFPT for t50 and t5`

Let us first compare the values of MFPT in both limits of
t to find the ‘‘natural’’ expected tendency in the relation
betweenT and t. It follows from ~3.15! that for t50 and
a.0 the MFPT is equal to that of the stable barrier, which is
a result of the disappearance of barrier fluctuations as
t→0. If a50 the potential disturbance does not disappear in
the memoryless limit resulting in an increase of the diffusion
functionG(x) and hence in a decrease of the MFPT. This
property has been explained by Steinet al. @13# as follows.
During the finite time interval needed for crossing the barrier
there are some infinitesimally short (t50) periods during
which a random perturbation lowers the barrier below its
unperturbed height. If until that moment the particle ‘‘sur-
mounts’’ the barrier up to this level it gets free to evolve to
the other side of the barrier. Hence, the average time of the
process is smaller than that for the unperturbed barrier. The
general relation for the whole class of noises~2.6! in the
uncorrelated noise limit reads~compare@20#!
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T 00<Ts . ~5.1!

For the other limitt→`, if a,1 the MFPT is equal to
Ts ~a noiseless case! while, as follows from ~3.23!, for
a51 the nondisappearing barrier fluctuations prolong the
escape process. This fact is recognized in the literature too
@12#. It ensues from the averaging over the barrier noisey
~Sec. III.B.!. The quantityT0(x,y) ~3.22! to be averaged
represents the MFPT over a perturbated barrier with a fixed
value of y. Becausey appears in~3.22! in an exponent the
longer times associated with the higher barriers dominate in
the averaged expression. The general inequality for the
MFPT reads for this limit

Ts<T 0` . ~5.2!

From ~5.1! and ~5.2! one has~compare@25# for CVN!

T 00<T 0` . ~5.3!

In consequence the natural tendency is that the escape time is
not decreased by the exponentially correlated barrier noise. If
either a50 for t50 or a51 for t5`, one expects an
increase of the MFPT witht. If aÞ0 for t50 andaÞ1 for
t5`, the MFPT is the same for both extreme values oft
and it is equal to that of a static barrierTs . Nevertheless,
since the dynamics does depend on the correlation timet the
MFPT cannot be a constant function oft and so at least one
extremum ofT(t) occurs.

B. The dependence of the MFPT on smallt

The behavior of the MFPT in the very vicinity of the
limiting values of t is determined by the first-order term
T 1i . Examine the limitt→0 first. The casea.0 is clear. It
follows from ~3.17! that T 10,0. The correlations of barrier
fluctuations reduce the time of diffusion across the barrier.
This results from the nonexistence of barrier fluctuations for
t50. Because fort close to zero any time scale of the
system is much greater thant, the barrier noisez(t) may be
considered as an effectively white one@8#. The only conse-
quence of an increase oft is thus an increase in the strength
Q(t) yielding an increase in the diffusion functionG(x) and
a decrease inT. Since«5ta in ~3.11! the smaller is the value
of a the stronger is the reduction of the MFPT.

The casea50 is much more intricate. If for smallt the
strength Q(t) increases faster than linearly, i.e., if
0,b,1, @37# then «T 105tbQ1B

0. Since B0,0, for in-
creasingt the MFPT decreases forQ1.0 and increases for
Q1,0. If Q(t) varies more slowly than linearly (b.1)
then «T 105tQ0A

0. The shapes ofU(x) and V(x) become
essential. We have analyzed this point in the weak noise
approximation finding that usuallyT 10 is positive and the
MFPT increases witht similarly as for diffusion driven by a
colored noise. However, for some forms ofU(x) and
V(x), T 10 may become negative. As mentioned in Sec. IV
this is possible for a steep barrier with a flat bottom or a flat
top, when a disturbance small enough acts on this flat parts
of potential only. Due to the special relation between the
derivatives ofU(x) andV(x) it seems that the acceleration
of the escape process comes out as an effect of a correlated

perturbation in the region between the steep and flat parts of
the barrier. This problem needs further study.

Finally, if b51 both terms~3.17b! and~3.17c! contribute
to T 10. It follows from the preceding discussion that they
cooperate or compete in the determination of the sign of
T1, so both an increase or a decrease ofT are possible.

Irrespectively from the value ofa one can distinguish two
mechanisms of the influence of the correlated barrier fluctua-
tions on the escape rate. The first one, described byB0, con-
nects the acceleration or slowing down of the escape process
with an increase or a decrease of the strengthQ(t) of the
disturbance noise, respectively. This behavior is independent
of the shape of the barrier and its perturbation. However, if
Q(t) does not vary sufficiently rapidly whent increases
(a50 andb>1) the details of the properties ofU(x) and
V(x) decide on thet dependence ofT.

C. The dependence of the MFPT on larget

The discussion of the other limitt→` proceeds quite
similarly, however, as mentioned in Sec. II, it is more con-
venient to interpret the properties ofT in terms of the vari-
anceD. The casea,1 is clear. It follows from~3.26! that
T 1`.0 — the longer the barrier fluctuations are correlated
the weaker they impede the activation process. This is a con-
sequence of the vanishing ofz(t) as t→`. Even for very
long but finite t the barrier does fluctuate and the escape
time over the heightened barrier contributes more substan-
tially to the MFPT~see Sec. V.A.!. As t→`, the closer to
1 is the value ofa, the slower is the decrease ofD and the
weaker is the decrease ofT.

In the casea51 two termsA` and B` appear in the
formula ~3.24a! for T 1` . ForbÞ21 one of them dominates,
while for b521 they both essentially contribute toT 1` . If
0.b.21 then T 1`5tbQ1B

` and for increasingt the
MFPT decreases~increases! for Q1.0 (Q1,0). For
b,21 the termA` is the essential one and, as follows from
Sec. IV, for not specially sophisticated cases it is negative, so
T(t) increases whilet→`.

Quite similarly as in the case oft→0, irrespective of the
value ofa one can notice two ways of the influence of the
stochastic disturbance on the considered phenomenon, how-
ever the analysis in terms oft21 is now more convenient. If
D(t21) varies faster than linearly the behavior ofT(t21)
reflects an increase or a decrease of the variance. For much
smaller changes ofD(t21) (a51 andb<21) the details
of the shapes ofU(x) andV(x) decide about the properties
of the MFPT.

It follows from the above discussion that a monotonic
form of T(t) is possible only in a very specific case. Namely,
for the zero-t limit the barrier noisez(t) cannot vanish
(a50) and eitherA0.0 for b.1, orQ1,0 for 0,b,1,
or A01Q1B

0.0 for b51. In the infinite-t limit the noise
z(t) must survive too (a51), and either A`,0 for
b,21, or Q1,0 for 0.b.21, or A`1Q1B

`,0 for
b521. Let us notice, nevertheless, that these are only the
necessary conditions. Some extrema ofT(t), impossible to
foresee by the present approach, might occur because of the
specific properties of the system for finitet. In the case of
any other relation between the barrier noise parameters and
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the termsAi andBi , the MFPT either initially decreases in
the vicinity of t50, or finally decreases ast→`. Due to
~5.3! this implies a nonmonotonic behavior ofT(t).

VI. EXAMPLES

In the preceding section we have discussed the general
features ofT for a class of noises with the strength given by
~2.6!. Let us illustrate the possible cases with some ex-
amples.

A. Noise of a constant strength CSN

This kind of noise is mostly used to mimic a stochastic
signal with a finite memory and it is this noise which is
usually called an Ornstein-Uhlenbeck one. For anyt its
strength is constantQ(t)5Q0, so a50 andQ150. The
limiting expressions for the MFPT are

T5T 001tQ0A
0 for t→0,

T5Ts1t21Q0B
`~a,1! for t→`, ~6.1!

with T 00 given by~3.15!. The quantityB` is always positive,
so ast→` the MFPT decreases towards its limiting value
Ts . The sign ofA

0 depends onU(x) andV(x). Usually it is
positive and the MFPT increases witht. In this caseT(t) is
surely a nonmonotonic function oft with a maximum higher
than the value of the escape time for the static barrierTs .
Thus IA occurs.

It follows from Sec. IV thatA0 may also be negative. In
such a caseT(t) initially decreases, reaches a minimum,
then it increases to its maximum and finally it decreases to-
wardsTs . The nonmonotonicity manifests itself in the exist-
ence of two extrema and both RA and IA occur.

The small-t limit of the CSN has also been examined by
Stein et al. @13#. They have found a linear increase of the
mean exit time for increasingt, however with some numeri-
cal integration as a final step in the theoretical analysis. Such
a methodology could be the reason for the absence of the
possibility ofT decreasing which, as we have shown, occurs
only for some special types of potentials.

B. Noise of a constant variance CVN

A CVN is defined byQ(t)5tQ0 for anyt, soa51 and
Q150. The expressions for the MFPT are as follows:

T5Ts1tQ0B
0 for t→0,

T5T 0`1t21Q0A
` for t→`, ~6.2!

with T 0` given by ~3.23!. SinceB0 is negative, the MFPT
initially decreases. It follows from Sec. IV thatA` is usually
negative andT(t) increases up toT 0` when t→`. This
means that one minimum ofT(t) does exist and RA takes
place@21,22,24–26#. Let us notice, that a dichotomous noise
also possesses a constant variance and the appearance of RA
in the presence of DN disturbance@3,14,17,21# is absolutely
consistent with the present results.

Considering the longt limit for a51 in Sec. IV we have
not been able to exclude an existence of some ‘‘exotic’’ po-

tentials for whichA`.0, soT(t) should exhibit both a mini-
mum and a maximum. Such a case cannot appear in Re-
imann’s approach@25#, in which under very general
conditions forU(x) andV(x) the MFPT monotonically in-
creases witht. However, the so called ‘‘kinetic equation’’
@Eq. ~4.2! in @25## being the basis of the consideration does
not seem to be systematic, because the loss ratek(y) used
there has been taken just in the limitt→` without any cor-
rections for finitet. If one regards this correction it will be
an open question whether the MFPT remains increasing in
any case.

C. Noise vanishing for both limits of t

Now we consider an intermediate case, namely, a noise
also withQ150, but with 0,a,1, saya50.5. Since both
the noise strength fort→0 as well as the variance for
t→` vanish, barrier fluctuations modify the dynamics only
when the correlation time is finite. The formulas for the
MFPT for both limits oft read

T5Ts1t1/2Q0B
0 for t→0,

T5Ts1t21/2Q0B
`~a,1! for t→`. ~6.3!

SinceB0,0 andB`.0, in both limits of small and large
correlation timeT(t) decreases with increasingt. Both lim-
iting values of the MFPT are the same so there are two
extrema in the form ofT(t) — a minimum for the smaller
and a maximum for the greater value oft. Both phenomena
RA and IA appear and this feature is completely independent
of the shapes of the barrier and its disturbance.

D. Nonvanishing noise in any of the limits oft

As the fourth example we take a noise which does not
vanish in any of the limits oft. We choose a noise strength
of the formQ(t)5Q0(11t). For t→0 the noise param-
eters areQ15Q0.0, a50, b51, while for t→` they are:
Q15Q0.0, a51, b521. The expressions for the MFPT
are as follows:

T5T 001tQ0~A
01B0! for t→0,

T5T 0`1t21Q0@A
`1B`~a51!# for t→`, ~6.4!

with T 00 given by~3.15! andT 0` by ~3.23!. Depending on the
case, one expects a variety of behaviors ofT(t). For the
special kinds of potentials mentioned in Sec. IV, when
A0,0 andA`.0 both kinds of extrema appear. However,
this is also possible for ‘‘normal’’ potentials for which
A0.0 and A`,0, namely, when A0,2Q0B

0 and
A`.2Q0B

`. If one of these inequalities is false, either a
maximum or a minimum appears. Only ifA0.2Q0B

0 and
A`,2Q0B

`, one may expect a monotonic increase of
T(t), though this is not yet a sufficient condition.

VII. DISCUSSION

The non-Markovian character of the diffusional escape
over a fluctuating barrier, when those fluctuations are corre-
lated, implies that an exact analysis of the global problem is
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impossible. One may investigate rigorously two limiting
cases, namely, those with infinitely short and infinitely long
correlated fluctuations. It follows from the previous sections,
that this suffices to find many interesting aspects of the sub-
ject. The main result of our considerations is that the non-
monotonict dependence ofT is generic, while the expected
strictly monotonic increase appears for very specific kinds of
Ornstein-Uhlenbeck-like noises~e.g., example D in Sec. VI!.
This is a consequence of the disappearance of the barrier
noise z(t) in one or in both limits oft for most of the
members of the class~2.6! of Gaussian noises~2.2!, among
others for the mostly used CSN and CVN. The existence of
either a minimum or a maximum~or both of them! of T(t)
indicates the occurrence of the phenomenon of resonant ac-
tivation or inhibition of activation@38# ~or both of them!,
respectively.

For most of the cases of the Gaussian noisez(t) the be-
havior ofT(t) for small t is determined only by the proper-
ties of z(t) and depends neither on the shape of the barrier
nor on its disturbance. Nevertheless, there are two cases in
which those shapes play an important role. First, it is the case
discussed in Sec. IV when not too strong fluctuations of the
flat part of the barrier may accelerate the escape event. The
second case appears fora50 andb51 when the two con-
tributionsA0 andB0 to the first-order correction of MFPT
~3.17a! are of opposite signs. Quite similarly, fort→`, the
dependence ofT(t) on t is usually related only to the prop-
erties ofz(t). The forms ofU(x) andV(x) become impor-
tant merely fora51 andb51, i.e., when both termsA` and
B` contribute toT 1`

In Sec. II we have noticed an analogy between the prop-
erties of the Gaussian correlated noise in both limits oft.
This may be extended to the properties of the MFPT for the
escape over a fluctuating barrier. The possibility of the oc-
currence of a minimum ofT(t) depends on the behavior of
the noise strengthQ(t) in the zero-t limit while the appear-
ance of a maximum results from the properties of the noise
varianceD(t) for an infinitely larget. It seems that this
symmetry is disturbed only for the special forms of poten-
tials discussed in Sec. IV. This case has no counterpart in the
infinite-t limit, however the sign of~3.24b! remains an open
question and one cannot exclude some analogy in this case,
too.

In @20# Hänggi has found that RA appears whenever
Q(t) increases sufficiently rapidly with increasingt. Our
results state precisely the character of thist dependence of
the noise strength. Namely, RA occurs if:~i! Q(0)50 which
means that for anyt.0 the strengthQ(t) is greater than
Q(0), ~ii ! Q(0)Þ0 andQ(t) increases faster than linearly
@37# (a50 and 0,b,1 with Q1.0). If the increase of
Q(t) is slower then RA usually does not occur unless
U(x) andV(x) have some special properties.

In the above conclusions we do not mention the existence
of the thermal noisej(t). In fact the character of thet de-
pendence of the MFPT is influenced by the white noise
strengthq in two special cases, only. The first one is the case
of competition between the termsAi andBi when their exact
values are important. The second one is the case of the spe-
cial shapes ofU(x) andV(x) discussed in Sec. IV, for which
the sign ofA0 depends on the ratioR of the two noise

strengths. Ifq is sufficiently small there is no possibility for
the RA to appear. Besides those exceptions, sinceV8(x) van-
ishes atxa andxb , the white noisej(t) is essential only for
the initialization of the evolution from the bottom of the well
as well as for a successful surmount at the very top of the
barrier. The value ofq governs the time scale of the process
rather, than decides about the way in which barrier fluctua-
tions change the rate of the escape.

In the present paper the escape process has been charac-
terized by the mean timeT of the first arrival at the barrier
top. In order to get the escape time one must be sure that the
escape event really takes place and the particle will not re-
turn to the initial well immediately. Thus one has to multiply
T by the inverse of the probability of leaving the barrier top
in the required direction outside the potential well. For a
symmetric barrier this probability equals 1/2. In an unsym-
metrical case it is conditioned by the details of the problem
and possibly depends also ont. It seems reasonable, how-
ever, that thet dependence of the activation process intro-
duced in such a way plays a secondary role, if any, because
it is related to the relaxation from an unstable state rather
than to the escape over the barrier. The most crucialt de-
pendence of the escape time, which is observed for both
symmetric and unsymmetrical barriers, comes from thet
dependence of the MFPT over the top of the barrier, being
considered in this paper.

Further, we have used the assumption that the positions of
the extrema of the total fluctuating potential are fixed. This
has allowed for a direct application of the FPT technique
with both the initial pointxa and the thresholdxb being well
defined. The omission of this restriction@V8(xa)Þ0 or
V8(xb)Þ0] would involve a necessity of averaging over an
ensemble of initial conditions as well as a more complicated
form of the separatrix. Nevertheless, the exact formulas of
Sec. III suggest that even then most of our conclusions
would remain valid. One should possibly expect more diffi-
culties while analyzing the signs ofA0 andA`. Also, if the
integration interval in~3.17c! or ~4.3b! is extended outside
the interval (xa ,xb) then the presence ofU8(u) in those
formulas yields some trouble in determining the sign ofB0.
Besides one must notice that this generalization concerns the
variation of the distance between the extrema of the global
potential rather than the modifications of the height of the
barrier. This implies that the effect of the potential fluctua-
tions would appear in the prefactor of the formula for the
escape time and not in its exponent.

Our calculations for the limiting values oft do not allow
us to conclude anything about the place and size of the ex-
trema ofT. To this end one needs an approximation which
deals with finite values oft. Such approach has been pro-
posed by Madureiraet al. @22# with a good agreement be-
tween theory and numerics. We must notice, however, that
their generalized unified colored noise theory seems not to be
correctly formulated in the limit of larget. Namely, it states
that if barrier fluctuations are generated by CSN then the
escape time increases up toTs ast→`, while we prove here
thatTs should be approached from above. This inconsistency
appears because in@22# some terms of the order oft21 re-
lated to the barrier noise have been omitted in the large-t
Markovian approximation of the problem~see the discussion
at the beginning of Sec. V A of @22#!.
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Finally let us notice that the existing numerical@25,23#
and experimental@26# data do not confirm so far the appear-
ance of the maximum ofT. The possible explanation of this
fact seems to be the choice of the perturbating potential in
the cited references, namelyV8(x)5x. Such a disturbance
dramatically changes the position of the potential minimum

and has been excluded in the present model. This point needs
further studies.
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@16# A. Fuliński, Phys. Lett. A180, 94 ~1993!.
@17# M. Bier and R. D. Astumian, Phys. Rev. Lett.71, 1649~1993!.
@18# J. J. Brey and J. Casado-Pascual, Phys. Rev. E50, 116~1994!.
@19# P. Reimann, Phys. Rev. E49, 4938~1994!.
@20# P. Hänggi, Chem. Phys.180, 157 ~1994!.
@21# P. Pechukas and P. Ha¨nggi, Phys. Rev. Lett.73, 2772~1994!.
@22# A. J. R. Madureira, P. Ha¨nggi, V. Buonomano, and W. A.

Rodrigues Jr., Phys. Rev. E51, 3849 ~1995!; 52, 3301~E!
~1995!.

@23# R. Bartussek, P. Ha¨nggi, and A. J. R. Madureira, Phys. Rev. E
52, 2149~1995!.

@24# P. Reimann, Phys. Rev. Lett.74, 4576~1995!.
@25# P. Reimann, Phys. Rev. E52, 1579~1995!.
@26# F. Marchesoni, L. Gammaitoni, E. Menichella-Saetta, and S.

Santucci, Phys. Lett. A201, 275 ~1995!.
@27# J. Maddox, Nature359, 771 ~1992!.
@28# W. Horsthemke and R. Lefever,Noise–Induced Transitions

~Springer, Berlin, 1984!.
@29# P. Hänggi, P. Jung, and P. Talkner, Phys. Rev. Lett.60, 2804

~1988!; C. R. Doering, P. S. Hagan, and C. D. Levermore,ibid.
60, 2805~1988!.

@30# The expansion used in this paper is somewhat related to the
singular perturbation technique exploited in@13# @see also@28#
or C. R. Doering, P. S. Hagan, and C. D. Levermore, Phys.
Rev. Lett. 59, 2129 ~1987!#. Nonetheless since we have to
solve an equation for the mean FPT and not for the probability
distribution of FPT we avoid the fundamental difficulty of that
method, namely, the noninvertibility of the operatorL0.

@31# M. M. Klosek-Dygas, A. J. Matkowsky, and Z. Schuss, Phys.
Rev. A 38, 2605~1988!.

@32# The caseq/t→0 for t→0 has been considered for CSN in
@11# by means of the path integral theory. The conclusion
states that for smallt the mean escape time increases ast2.

@33# J. Iwaniszewski, P. V. E. McClintock, and N. D. Stein, Phys.
Rev. E50, 3538~1994!.

@34# The Lorentz-like potentialV(x) does not fulfill the require-
ment thatV8(xa)50, however for the given values of param-
eters and for smallQ0 this is negligible.

@35# If DV50 the higher-order term of the saddle point method
must be considered. Due to the form of the exact expressions
~3.24c! and ~3.26!, however, the sign ofB` remains always
positive.

@36# Because foru5u8 and v5v8 the integrated function in
~3.24b! is always positive this conclusion is valid for all types
of V(x), even though forDV50 the higher-order term of the
saddle point method has to be calculated.

@37# Note that fort,b1/(12b) the increase oftb is faster than lin-
ear.

@38# It is a matter of further studies whether the appearance of a
maximum ofT(t) @called here an inhibition of activation~IA !#
is also, by analogy to RA, a resonancelike phenomenon, so it
should rather be called aresonant inhibition of activation.

3184 54JAN IWANISZEWSKI


